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THE HESSIAN DISCRETISATION METHOD 3

and non-conforming FE schemes) fit into the HDM. Finally, some technical results
are gathered in an appendix.

Notations. A fourth order symmetric tensor P is a linear map Sg(R) — Si(R),
where S;(R) is the set of symmetric matrices, d is the dimension; p;;x; denote the
indices of the fourth order tensor P in the canonical basis of Sy(R). For simplicity,
we follow the Einstein summation convention unless otherwise stated, i.e, if an
index is repeated in a product, summation is implied over the repeated index. For
¢ € S4(R), using the definition of symmetric tensor, one has P{ € Sy(R) and
Pijkl = Pjikl = Pijik- Lhe scalar product on Sg(R) is defined by £ : ¢ = &;;¢;;. For
a function & : Q@ — S3(R), denoting the Hessian matrix by H we set H : £ = 0;;&;;.
Finally, the transpose P of P is given by P™ = (pji;;), if P = (psjri). Note that
P7¢ ¢ =& : Pp. The tensor product a ® b of two vectors a,b € R? is the 2-tensor
with coefficients a;b;. The Euclidean norm on R? is denoted by |-, as is the induced
norm on Sy(R). The Lebesgue measure of a measurable set E C R? is denoted by
|E| (note that the nature of the argument of |-|, a vector or a set, makes it clear if
we talk about the Euclidean norm or the Lebesgue measure). The norm in L?(Q),
L2(2)4 for vector-valued functions, and L?(£2; R?*4) for matrix-valued functions,
is denoted by ||]|.

2. MODEL PROBLEM

Let © C R? be a bounded domain with boundary 9Q and consider the following
fourth order model problem with clamped boundary conditions.

d
Z Ot (aijrdiju) = f in Q, (2.1a)
i,5,k,l=1
_ Ou

where @ = (71, 72,...,24) € Q, f € L*(Q), n is the unit outer normal to © and
the coefficients a;;z; are measurable bounded functions which satisfy the conditions
Qijkl = Qjikl = Qijik = Qprij for 4,5, k, 1 =1,--- d. For all £, ¢ € S4(R), we assume
the existence of a fourth order tensor B such that AS : ¢ = B : B¢, where A is
the four-tensor with indices a;;i;. We notice that B : B¢ = B" B¢ : ¢, so that
A=DB"B.

Setting

on
= {ve H*(Q);v = [Vu| =0 on 9Q},

the weak formulation of (2.1) is

V=HQ) = {u € H*(Q);v = 9% _ 0 on 39}

Find @ € V such that Vv € V, / HBT : HBv dx = / fvdez, (2.2)
Q Q

where HPv = BHwv. Note that fQHBﬂ . HBvdx = fQ AHu : Hvdx, since
A = B™B. We assume in the following that B is constant over 2, and that the
following coercivity property holds:

Jo > 0 such that |HPv|| > o||v]|g2(a). Yv € HF (). (2.3)
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Hence, the weak formulation (2.2) has a unique solution by the Lax—Milgram
lemma.

Remark 2.1. Adapting the analysis of Section 3 to B dependent on x € ) is eusy,
provided that the entries of B belong to W (Q).

2.1. Examples. Let us examine two specific examples of the abstract problem
(2.1).

2.1.1. Biharmonic problem. The biharmonic problem is
0
A2u=finQ,  u=2L—0in Q. (2.4)
on

The weak formulation of this model is given by (2.2) provided that B is chosen to
satisfy

/HBu:'HBUd:I::/AuAwa.
Q Q

One possible choice of B is therefore to set B = %Id for £ € S4(R) (where Id is

the identity matrix), in which case HZ = A. Since fQ AulAv dx = fQ Hu : Ho dz,
another possibility is to set B the identity tensor (B¢ = €), in which case HP = H.
By the Poincaré inequality, both choices satisfy (2.3).

2.1.2. Plate problem. The clamped plate problem [6, Chapter 6] corresponds to
(2.2) with d = 2 and left-hand side

/ AuAv + (1 — 7)(281216812?) — 81116(922?) — 82216(911?)) dx. (25)
Q

Here, the constant + lies in the interval (0,2). We notice that (2.5) is equal to
fQ AHu : Hv dx, where the tensor A has non-zero indices ai111 = 1, ag999 = 1,

aig12 = (1 — ’y), as121 = (1 — ’y), aj1eg = 7Y and as211 = 7- ItS ‘Square I‘OOt,

. . 144/1—72
can be defined as the tensor B with non-zero indices b1111 = bgggs = %,

b1122 = b2211 = \/ # and b1212 = b2121 = \/1 - . It can be checked that
(2.3) holds since, for some o > 0, A€ : € > 0?|€|? for all £ € Sy(R).

3. THE HESSIAN DISCRETISATION METHOD

We present here the Hessian discretisation method, and list the properties that are
required for the convergence analysis of the Hessian scheme. The error estimate is
stated at the end of the section.

Definition 3.1 (B—Hessian discretisation). A B—Hessian discretisation for clamped
boundary conditions is a quadruplet D = (Xp o,p, Vp, HB) such that

Xp,o is a finite-dimensional space encoding the unknowns of the method,
IIp : Xpo — L?(Q) is a linear mapping that reconstructs a function from
the unknowns,

Vp: Xpoy— L2(Q)? is a linear mapping that reconstructs a gradient from
the unknowns,

o HE: Xpo— L2(Q; R s a linear mapping that reconstructs a discrete
version of HP(= BH) from the unknowns. It must be chosen such that
|- llp:=HB - || is a norm on Xp .
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Remark 3.2 (Dependence of the Hessian discretisation on B). In the (2nd order)
gradient discretisation method, the definition of a gradient discretisation is inde-
pendent of the differential operator. Here, our definition of Hessian discretisation
depends on B, that appears in the differential operator. This is justified by the
fact that some methods (such as the one presented in Section 5) are not built on
an approximation of the entire Hessian of the functions, but only on some of their
derivatives (such as the Laplacian of the functions). Although it might be possible
to enrich these methods by adding approrimations of the ‘missing’ second order
derivatives (as done in [9] in the context of the GDM), it does not seem to be the
most natural way to proceed, and it leads to additional technicality in the analysis.
Making the definition of HD dependent on the considered model through B enables
us to more naturally embed some known methods into the HDM.

Note however that a number of FE methods provide approrimations of the entire
Hessian of the functions (see Sections 4 and 7). For those methods, a B-Hessian
discretisation is built from an Id-Hessian discretisation (that is independent of the
model) by setting HB = BHY.

IfD = (Xpo,lp, Vp, Hg) is a B—Hessian discretisation, the corresponding scheme
for (2.1), called Hessian scheme (HS), is given by

Find up € Xp g such that for any vp € Xp,

3.1
/ ngD : Hgvp de = / fHDUD de. ( )
Q Q

This HS is obtained by replacing, in the weak formulation (2.2), the continuous
space V by Xp g, and by using the reconstructions IIp and HE in lieu of the
function and its Hessian.

We will show that the accuracy of the HS can be evaluated using only three mea-
sures, all intrinsic to the Hessian discretisation. The first one is a constant, Cg,
which controls the norm of the linear mappings IIp and Vop.

11
C5 = max (” gw” , ||ng||> . (3.2)
wexp o\{0} \ [[Hpw| " [Hpwll
The second measure of accuracy is the interpolation error Sg defined by
V€ Hy(Q),
B i B B (3.3)
SB(e) = min (|llpw — ¢ + [Vow — Veel| + [HBw — K¢ ).

Finally, the third quantity is a measure of limit-conformity of the HD, that is, how
well a discrete integration-by-parts formula is verified by the discrete operators:

Vee HP(Q) = {¢ e LA ()™ H : B"B¢ € L*(Q)},
1

max
weXpo\{0} [Hpw

3.4
WE(e) - 34

/Q (3 B7BOpw — BE : Hpw) da

Note that if & € HP(Q) and ¢ € HZ(Q), integration-by-parts show that Jo(H
B™B&)¢ = [, B¢ : HBp. Hence, the quantity in the right-hand side of (3.4)
measures a defect of discrete integration-by-parts between Ilp and 'Hg.

Closely associated to the three measures above are the notions of coercivity, con-
sistency and limit-conformity of a sequence of Hessian discretisations.



6 JEROME DRONIOU, BISHNU P. LAMICHHANE, AND DEVIKA SHYLAJA

Definition 3.3 (Coercivity, consistency and limit-conformity). Let (Dy,)men be a
sequence of B—Hessian discretisations in the sense of Definition 3.1. We say that

1) (D) men is coercive if there exists Cp € Rt such that CB < Cp for all
( e D,

m € N.
(2) (Dmm)men is consistent, if

Vo € H3(Q), lim SB (¢) =0. (3.5)

li
m— 00
(3) (Dm)men is limit-conforming, if

ve e HB(Q), lim WE5 (&) =0. (3.6)
Remark 3.4. As for the (2nd order) gradient discretisation method, see [10, Lem-
mas 2.16 and 2.17], it is easily proved that, for coercive sequences of HDs, the

consistency and limit-conformity properties (3.5) and (3.6) only need to be tested
for functions in dense subsets of H3(2) and HP (L), respectively.

Remark 3.5. If B = Id, we write Hp (resp. Cp, Sp and Wp) instead of 'HIB
(resp. CH, S and Wkt).

We can now state our main theorem giving the error estimates.

Theorem 3.6 (Error estimate for Hessian schemes). Under Assumption (2.3), let
7w be the solution to (2.2). Let D be a B—Hessian discretisation and up be the
solution to the corresponding Hessian scheme (3.1). Then we have the following
error estimates:

IMpup — || < CpW§ (Ha) + (Cp + 1)Sp (u)

IVpup — V| < CoWg (H7) + (Cp +1)Sp (@) )

[HBup — HP7|| < W (Hu) + 253 (@) )

(Note that Hu € HB(Q) because Hu € L*(Q2)¥*? and H : BTBHu = H : AHu =
fel*Q).)

The following convergence result is a trivial consequence of the error estimates
above.

3 )

(3.
(3.
(3.

© o 3

Corollary 3.7 (Convergence). Let (Dp,)men be a sequence of B—Hessian dis-
cretisations that is coercive, comsistent and limit-conforming. Then, as m — oo,
Up, up, — @ in L*(Q), Vp, up, — Va in L*(Q)? and 'Hgmqu — HEB7 in
L2(Q)d><d.

Let us now prove Theorem 3.6.

Proof of Theorem 3.6. For all vp € Xp o, the equation (2.1a) taken in the sense of
distributions shows that f = H : AHu, and thus, by the Hessian scheme (3.1),

/ HBup : HBvp dz = / fllpvp de = / (H : B" BHu)llpvp dz.
Q Q Q
Using the definition of W5, we infer

/ (H% - ngD) : HBvp de < WE (Hu)|Havp||. (3.10)
Q
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Define the interpolant Pp : HZ(Q) — Xp o by

Ppu = argmin <||pr — || + |[Vpw — Va|| + |HBw — ’HBEH)
weXp,o

and notice that
|Tllp Pp@ —@|| + |VpPpa — V|| + |HEPpu — HPa| < S5 (7). (3.11)

Introducing the term HP% and using (3.10), we obtain
/ (ngpﬂ — 'HgU'D> . Hgvp dx
Q

_ /Q (H% - H£UD> - HEup da + /Q (HgPDE - H%) - HEup da
< W§ (Ha)[HBvpl| + |HE Ppu — 1Pl [HBvoll.
Choosing vp = Ppu — up, we get
IHE(PoT — up) |2 < WE (M) IHE(PoT — up)|
+ | HEPoT — HPT| [ HE(PoT — up)|.
Thus, by (3.11),
|HE P — HBup|| < W5 (Ha) + SE(@). (3.12)
A use of triangle inequality, (3.11) and (3.12) yields
|HBup — HPal| < |Hpup — HB Ppul| + |Hp Pou — HP |
< WE(H7) + 255 (@),
which is (3.9). Using the definition of Cp, and (3.11) and (3.12), we obtain
[Hpup — | < ||Hpup — IpPpal|| + ||IlpPpu — |
< Op||HB Ppu — Hipup|| + Sp (a)
< CpW§ (Hu) + (Cp + 1)Sp ().
Hence, (3.7) is established, and (3.8) follows in a similar way. O

We now aim to present particular HDMs. The first (in Section 4) is a novel scheme
based on gradient recovery operators, and a particular cheap construction of these
operators using biorthogonal basis. Then, we show that a finite volume method (in
Section 5) and known finite element methods (in Section 7) fit into the HDM. Let
us first set some notations related to meshes.

Definition 3.8 (Polytopal mesh [10, Definition 7.2]). Let §2 be a bounded polytopal
open subset of R? (d >1). A polytopal mesh of Q is T = (M, F,P), where:

(1) M is a finite family of non empty connected polytopal open disjoint subsets
of Q (the cells) such that Q@ = Ugepm K. For any K € M, |K| > 0 is the
measure of K, hx denotes the diameter of K, Tk is the center of mass of
K, and nk is the outer unit normal to K.

(2) F is a finite family of disjoint subsets of Q (the edges of the mesh in 2D,
the faces in 3D), such that any o € F is a non empty open subset of a
hyperplane of RY and o C Q. Assume that for all K € M there exists
a subset Fx of F such that the boundary of K is |J,ex, 0. We then set
My, ={K € M; 0 € Fx} and assume that, for allc € F, M, has ezactly
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one element and o C 02, or My has two elements and o C Q. Let Fin be
the set of all interior faces, i.e. 0 € F such that o C Q, and Fext the set
of boundary fuces, i.e. o € F such that o C Q. The (d — 1)-dimensional
measure of o € F is |o|, and its centre of mass is T,.

(3) P=(xx)kem is a family of points of Q indexed by M and such that, for
Wl K e M, xi € K. Assume that any cell K € M is strictly @y -star-
shaped, meaning that if x € K then the line segment [z, x) is included in
K.

The diameter of such a polytopal mesh is h = maxXgeam hi .

4. METHOD BASED ON GRADIENT RECOVERY OPERATORS

4.1. General setting. Let V}, be an H}-conforming finite element space with un-
derlying mesh M = M;,. We assume that V}, contains the piecewise linear func-
tions, and that M, satisfies usual regularity assumptions, namely, denoting by
prx = max{r > 0; B(ZTg,r) C K} the maximal radius of balls centred at Tx and
included in K, we assume that there exists n > 0 (independent of h) such that

VKEM,nzh—K. (4.1)
PK
The gradient Vu of u € V}, is well defined, but its second derivative VVu is not.
In order to compute some sort of second derivatives, consider a projector @y, :
L?*(Q)) — Vj,, which is extended to L?(Q)? component-wise. Then Vu can be
projected onto V,f, and the resulting function Q,Vu € fo is differentiable. We
can then consider V(Q;,Vu) as a sort of Hessian of u. However, it not necessarily
clear, for some interesting choices of practically computable @), (see Section 4.2),
that this reconstructed Hessian has proper coercivity properties. We therefore also
consider a function &;, whose role is to stabilise this reconstructed Hessian.
Let (Vi,, Qn, I, G3) be a quadruplet of a finite element space V;, C H{ (2), a recon-
struction operator @y, : L?(Q) — Vj, that is a projector onto V;, (that is, Qp, = Id
on V3,), an interpolant I, : HZ(2) — V}, and a stabilisation function &), € L>°(Q)¢
such that, with constants C' not depending on A,

(PO) [Strucure of Vi, and I;] The inverse estimate ||[Vz| < Ch~!||z| holds for
all z € V, and, for ¢ € HF(12), we have |VI,o — V| < Chlo| g2(0)-

(P1) [Stability of Qn) For 6 € L*(2), we have Q6| < Cll6].

(P2) [QnVI}, approzimates V] For some space W densely embedded in H3(Q) N
HE(2) and for all ¢» € W, we have [|Qy VI, — V|| < CR?||[¢]|w.

(P3) [H! approzimation property of Qn] For w € H?(Q)N H(2), we have
IVQrw = Vwl|| < Chllw| g2 (q)-

(P4) [Asymptotic density of [(QnV —V)(V)]1] Setting Ny, = [(QnV — V) (Vi)]*,
where the orthogonality is considered for the L?(€2)%inner product, the
following approximation property holds:

inf ||pn — ¢l < Chllellgr ), Yo € H'(Q)Y,
HrENR

(P5) [Stabilisation function] 1 < |&p] < C and, for all K € M, denoting by
Vi(K) ={vk ;v eV, K& M} the local FE space,

[Shix ® (QrY = V)(Va(K))] L VVi(K)?,
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dxd

where the orthogonality is understood in L?(K) with the inner product

induced by “:”.

Remark 4.1. A classical operator Q, that satisfies these assumptions, for standard
FE spaces Vi, is the L?-orthogonal projector on Vi,. This operator is however non-
local and complicated to compute. We present in Section 4.2 a much more efficient
construction of Qp, local and based on biorthogonal bases.

To construct an HD based on such a quadruplet, we assume the following stronger
form of (2.3):
305 > 0 : |BE| > Cple], VE € Su(R). (4.2)

Definition 4.2 (B-Hessian discretisation using gradient recovery). Under As-
sumption (4.2), the B-Hessian discretisation based on a quadruplet (Vi,, Qn, In, Sp)
satisfying (P0)—(P5) is defined by: Xp o = Vj, and, for u € Xp o,

Hpu=u, Vpu = Q,Vu and H8u = B[V(Q,Vu) + &), ® (Q,Vu — Vu)].

The next theorem gives an estimate on the accuracy measures C5, S5 and W5
associated with an HD D using gradient recovery. Incidentally, the estimate on Cg
also establishes that |HB - || is a norm on Xp .

Theorem 4.3 (Estimates for Hessian discretisations based on gradient recovery).
Let D be a B—Hessian discretisation in the sense of Definition 4.2, with B satisfying
Estimate (4.2) and (Vi, I, Qn, Sp) satisfying (PO)—(P5). Then, there exists a
constant C', not depending on h, such that

e C5<C,

o Vo eW, SB(p) < Chllpllw,

o V&€ HX Q)™ WE(€) < Chll¢]l e (yaxa.

Before proving this theorem, let us note the following straightforward consequence
of Remark 3.4.

Corollary 4.4 (Properties of Hessian discretisation based on gradient recovery).
Let (Di)men be a sequence of B—Hessian discretisations, with B satisfying Esti-
mate (4.2) and each Dy, associated with (Vi ,Qh, ,In,,,On,, ) satisfying (P0O)—
(P5) uniformly with respect to m. Assume that hy, — 0 as m — oo. Then the
sequence (D )men is coercive, consistent and limit-conforming.

Proof of Theorem 4.5.

e COERCIVITY: Let v € Xp . Noticing that |a ® b| = |a||b] for any two vectors a
and b, the definition of HB, Property (4.2) of B and |&| > 1 yield

HEv|? > 0’29/9 IV(QnVv) + &), @ (Qn Vv — Vo)|* da
= 0,23/Q IV(Q,Vv)]? de + C% /Q |G, @ (Qn Vv — Vv)|? dz
+2C% /Q V(QrVv) : 6, ® (QrVv — Vo) de
> C% (IV(QnVo) | + [@n Vv — Vol [?)

+20% Z / V(QrVv) : &, ® (QnVv — Vo) de.
Kem’ K
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Since V(QrVv)x € VVi(K)?, a use of property (P5) shows that the last term
vanishes, and we have thus

[HBol? > CF (IV(QrVo)l” + QYo — Vul?) (4.3)
which implies
Cp'V2|HB| = [V(QuVo)l| +|Qr Vv — Vol . (4.4)
Apply now the Poincaré inequality twice, the triangle inequality and (4.4) to obtain
[Mpo|| = lvf| < diam(Q)|[Vo
< diam(Q)||Vv — Q,Vv|| + diam(Q)]|Qn V||
< diam(Q)|| Vv — Qp, Vo|| 4 diam(Q)?||V(Qn V)|
< O5'V2 max(diam(Q), diam(Q)?) || HBv]. (4.5)
From (4.3) and the Poincaré inequality, we also have
Vool = |Qn V|| < diam(Q)[|V(Q,Vv)|| < diam(2)Cy [HBv]- (4.6)

Estimates (4.5) and (4.6) show that C5 < C5'v2 max(diam(Q2), diam(Q)?).

e CONSISTENCY: let ¢ € W C H3(Q) N HZ(Q) and choose v = I, € Xp . Using
the properties (PO) (which implies |[Ino — ¢|| < Chll¢|l g2y by the Poincaré
inequality) and (P2), we obtain

oo — ol = [lIne — ¢l < Chllel a2 o) (4.7)
and
Voo — V|| = |QuVInp — Vel < Ch?||p|lw. (4.8)
Let us now turn to |[HBv — HP¢p||. Observe that VV is another notation for H.
Using a triangle inequality, the boundedness of B and & implies
IHpo = HPell = | BIV(Qn Vo) + 61 @ (QuVv — Vo) — BHy||
< IBIV(@nVo) = VV] || + [|BS, © (@nVe — Vo)
< CIV(QrVv) = VVo| +C[|Qn Vv — Vul|. (4.9)

A1 A2

Introducing the term V(Q,V¢), using in sequence the triangle inequality, the in-
verse inequality in (P0), (P3), the projection property of Qp, (P1) and (P2), we
get
Ay < [IV[QRVY — QuV el + IV(Qr V) — VV |

< ChHQRVY — QnVe| + ChlIVe| m2(a)

< Ch7YQn (QrVv — Vo) || + Ch||[Ve| g2(a)

< Ch7HQuVIng = V| + Ch||[ Vel a2y < Chllelw. (4.10)
To estimate Ay, we use the properties (P2) and (PO0):

Az <||QnVo = V|| + [V — Vu|| < CR?[|¢llw + Chllellm2(0)- (4.11)

The estimate on S5(¢) follows from (4.7)—(4.11).
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e LIMIT-CONFORMITY: for £ € H%(Q)4*? and v € Xp 0,
/ (3 B7BOpw — BE : HEv) da
Q

- /Q ((’H . B"BE)lpo — BE BV(QhVU)> de

B

- / B¢ : BG, ® (QnVv — Vo) dx . (4.12)
Q

B>
Recall that v = IIpv and A = B™ B. Since Q,Vv € H(f2), Lemma A.2 applied to
(H : A¢)v and an integration-by-parts on B¢ : BV(QRVv) = A¢ : V(QRVv) show
that, for any pj, € Nj, = [(QnLV — V)(Vi)]*,
|B:1| = ’/(H Av de —|—/ QrVu - div(Af) d:z:’
Q Q
- ]/(thu — Vo) - div(A€) da:’
Q

_ ’ /Q(thu — Vo) - (div(A€) — ) da:’

<@ Vo = Vol[||div(AE) — - (4.13)
Take the infimum over all ), € Np,. Estimate (4.4) and Property (P4) yield
|B1| < ChIHBo|l|div(A8) || g1 (aya- (4.14)

Let £k denote the average of £ over K € M. By the mesh regularity assump-
tion, (£ — Exllp2(kyixa < Ch|E]lg1(kyaxa (see, e.g., [10, Lemma B.6]). Moreover,
since V}, contains the piecewise constant functions, VV}, (K) contains the constant
vector-valued functions on K and thus, by the orthogonality condition in (P5), the
Cauchy-Schwarz inequality, the boundedness of B and &y, and (4.4),

| Ba| = ’ Z /KBTBf 16, ® (QrVv — Vo) dm’

KeM
= ’ Z / (B"B¢ — B"Bék) : 65, ® (QrVv — Vo) dm’
Kem’K
<C Z € = ExllL2 ) 1@ VY — V|| L2(k)
KeM
< Chlé]l 1 (yaxal Hpol- (4.15)

Plugging (4.14) and (4.15) into (4.12) yields
’ / ((H . B"BE)llpu — BE - ng> da:’
Q

< Ch(1Iav(AD) s ey + €] yoxca ) [HBol.

By the definition (3.4) of W} (¢), this concludes the proof of the estimate on this
quantity. O
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4.2. A gradient recovery operator based on biorthogonal systems. We
present here a particular case of a method based on a gradient recovery operator,
using biorthogonal systems as in [21]. V}, is the conforming Py FE space on a mesh
of simplices, and I is the Lagrange interpolation with respect to vertices of M.
We will build a locally computable projector @, that is, such that determining
Qnf on a cell K only requires the knowledge of f on K and its neighbouring cells.
Let By :={¢1,-- -, dn} be the set of basis functions of V}, associated with the inner
vertices in M. Let the set By := {41, , 1, } be the set of discontinuous piecewise
linear functions biorthogonal to B also associated with the inner vertices of M, so
that elements of B; and By satisfy the biorthogonality relation

/ Yid; de = ¢;dij, ¢j #0, 1 <d,j <n, (4.16)
Q

where d;; is the Kronecker symbol and ¢; = fQ jp; dx. Let Mj, := span{Bs}. Such
biorthogonal systems have been constructed in the context of mortar finite elements,
and later extended to gradient recovery operators [16, 18, 21]. The basis functions
of M}, can be defined on a reference element. For example, for the reference triangle,
we have
121(33) =3 — 4z — 4o, 1//;2((13) =4z —1, and 1//;3(113) = 4x9 — 1,

associated with its three vertices (0,0), (1,0) and (0, 1), respectively. For the refe-
rence tetrahedron, we have

1//;1(113) =4 — 5131 — 5$2 — 5$3, 1//;2((13) = 5131 — 1,

1//;3((13) :=5x9—1, and 124(a:) = bxs — 1,

associated with its four vertices (0,0,0), (1,0,0), (0,1,0) and (0,0, 1), respectively.

These basis functions satisfy
d+1

Sdi=1. (4.17)
i=1

The projection operator Qy, : L?(Q) — V;, is the oblique projector onto V;, defined
as: for f € L2(Q), Qnf € V), satisfies

[@upyinde= [ fonde, v, . (4.18)
Q Q

Due to the biorthogonality relation (4.16), @} is well-defined and has the explicit
representation

3

Qnf =Y Jotifdz dj % .. (4.19)
i=1

The relation (4.18) shows M;, C [(Qn — I)(L?(R2))]*. Hence, if M), satisfies the
approximation property

inf an — || < ChlYllpie), Ve H'(),
an€Mp

we know that (P4) holds. In order to get this approximation property it is sufficient

that the basis functions of M), reproduce constant functions. Let K € M be an

interior element not touching any boundary vertex. Due to the property (4.17)
d+1

Zd)"i =1 on K,

i=1
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where {¢y, ;1:11 are basis functions of M, associated with the vertices (vi,...,V411)
of K.

However, this property does not hold on K € M if K has one or more vertices
on the boundary. We need to modify the piecewise linear basis functions of M}
to guarantee the approximation property [19, 17]. Let W, C H'(2) be the lowest
order FE space including the basis functions on the boundary vertices of M, and
let My, the space spanned by the discontinuous basis functions biorthogonal to the
basis functions of Wy. Mj, is then obtained as a modification of M}, by moving
all vertex basis functions of this latter space to nearby internal vertices using the
following three steps.

(1) For a basis function {/;k of M, n associated with a vertex vi on the boundary
we find a closest internal triangle or tetrahedron K € M (that is, K does
not have a boundary vertex).

(2) Compute the barycentric coordinates {ax ;}¢; of v; with respect to the
vertices of K, and modify all the basis functions {{/;Kl}f:f of M; n, associated
with K into ¥ ; = {/;K,i + aK,i{/;k fori=1,---,d+ 1.

(3) Remove ¢, from the basis of M),.

An alternative way is to modify the basis functions of all triangles or tetrahedra
having one or more boundary vertices as proposed in [16].

(1) If all vertices {v;}=; of an element K € M are inner vertices, then the lin-
ear basis functions {1/)\,};1:11 of M} on K are defined using the biorthogonal
relationship (4.16) with the basis functions {¢,, }*= of V.

(2) If an element K € M has all boundary vertices, then we find a neighbouring
element K , which has at least one inner vertex v, and we extend the support
of the basis function v, € M}, associated with v to the element K by defining
Py, =1on K.

(3) If an element K € M has only one inner vertex v and other boundary
vertices, then the basis function v, € M}, associated with the inner vertex
v is defined as ¢, = 1 on K.

(4) If an element K has two inner vertices v; and vo and other boundary ver-
tices, then the basis functions )y, , ¥, € M}, associated with these points
are chosen to satisfy the biorthogonal relationship (4.16) with ¢, , ¢., € Vi,
as well as the property ¢, +1,, =1 on K.

(5) In the three-dimensional case, we can have an element K with three inner
vertices {v;}?_; and one boundary vertex. In this case we define three
basis functions {t, }>_, to satisfy the biorthogonal relationship (4.16) with
{¢v,}3_, as well as the condition Zj’zl iy, =1on K.

The projection @y, is stable in L? and H'-norms [18], and hence assumption (P1)
follows. To establish (P2), we need the following mesh assumption.

(M) For any vertex v, denoting by M, the set of cells having v as a vertex,

> M@ v =om),

KeM, B

where S, is the support of the basis function ¢, of V;, associated with v.

This assumption is satisfied if the triangles of the mesh can be paired in sets of two
that share a common edge and form an O(h?)-parallelogram, that is, the lengths of
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any two opposite edges differ only by O(h?). In three dimensions, (M) is satisfied if
the lengths of each pair of opposite edges of a given element are allowed to differ only
by O(h?) [5]. The following theorem establishes (P2) with W = W3°°(Q) N HZ ()
and can be proved as in [30, 18].

Theorem 4.5. Let u € W3°°(Q)N HZ(Q). Assume that the triangulation satisfies
the assumption (M). Then

|1QrV I — Vu|| < Ch2||u||W3,oo(Q).

Since Qy, is a projection onto Vi, Qnln = I5. Hence, for w € H?(Q) N H(Q),
introducing Q, I,w = I,w and invoking the H!-stability property of Qy, [17, Lemma
1.8] leads to

IVQrw — Vw| < ||VQp(w — Ipw)|| + |VIpw — Vw| < C||VIw — Vw|.

The standard approximation properties of V}, then guarantee (P3). The Assump-
tion (P4) is satisfied since My, C Njp (M}, is obtained by combining functions in
Mh, that satisfies this property) and the basis functions of M), locally reproduce
constant functions. To build &, that satisfies (P5), divide each triangle K € M
into four equal triangles using the mid-points of each side, and define &, as a
piecewise constant function as described in Figure 1. It can be checked that this
function satisfies (P5). A similar construction also works on tetrahedra (in which
case G, is equal to 1 on the four sub-tetrahedra constructed around the vertices
of K, and —4 in the rest of K).

K

FIGURE 1. Values of the stabilisation function &, inside a cell K.

5. FINITE VOLUME METHOD BASED ON A-ADAPTED DISCRETIZATIONS

We consider here the finite volume (FV) scheme from [12] for the biharmonic prob-
lem (2.4) on A-adapted meshes, that is, meshes that satisfy an orthogonality prop-
erty.

Definition 5.1 (A-adapted FV mesh). A general mesh T is A-adapted if
(1) for all o € Fint, denoting by K, L € M the cells such that M, = {K, L},

the straight line (xx,xy) intersects and is orthogonal to o,
(2) for all o € Fexy with M, = {K}, the line orthogonal to o going through
T intersects o.

For such a mesh, we let D , be the cone with vertex xx and basis o, and D, =
U KeM, Dk 5. For each o € Fiyt, an orientation is chosen by defining one of the
two unit normal vectors n,, and we denote by K~ and K the two adjacent control
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volumes such that n, is oriented from K to K. For all 0 € Fexs, we denote the
control volume K € M such that ¢ € Fg by K, and we define n, by ng .. We
then set

i, — { dist(z ., 0) +dist(xy1,0) Vo € Fin (5.1)

dist(xzx, o) Vo € Foxt-

For all K € M, set Fx int = Fx N Fing and Fx exs = Fx N Fexe. Finally, we define
the mesh regularity factor by

07:max{max< diam (K) dy > ;KEM,UE}-K}.

dist(zg, o) dist(zx, o)

ti/%) Id, in which case

(2.2) corresponds to the biharmonic problem (2.4), for which the coercivity property
(2.3) holds (see Section 2.1.1).

We now define a notion of B—Hessian discretisation for B =

Definition 5.2 (B-Hessian discretisation based on A-adapted discretisation). Let

B = ti/%) Id and T be a A-adapted mesh. A B—Hessian discretisation is given by

D = (Xp,,1lp, Vp, HE) where
o Xp g is the space of all real families up = (ur)xkem, such that ug =0 for
all K € M with Fi ext 7# 0.
o For up € Xp, llpup is the piecewise constant function equal to ug on
the cell K.
e The discrete gradient Vpup is defined by its constant values on the cells:

1 o]0k ouD)(To — Tk )
v = — . 5.2
ceFK
where
Jur —ug Vo€ Frin, Mo ={K,L}
skewn={ 0T Ya 9
e The discrete Laplace operator Ap is defined by its constant values on the
cells: ) o5
O|0K,cUD
Agup = — ——. (5.4)
K25,
We then set 'H%uv = A'Dﬁld.
For up,vp € XD70,
oldsupdsv
[up, vp| = ZG;Hd% (5.5)

defines an inner product on Xp o, whose associated norm is denoted by |up||p.
Here ¢, is given by
_ugr —uge Vo e Fnt
Ooup = { 0 Vo € Foxt- (5.6)
It can easily be checked that, with this Hessian discretisation, the Hessian scheme

(2.2) is the scheme of [12] for the biharmonic equation. Let us examine the prop-
erties of this Hessian discretisation.

Theorem 5.3. Let D be a B—Hessian discretisation in the sense of Definition 5.2.
Then there exists a constant C, depending only on on 0 > 01, such that
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Q; dist(x, 0) > a}, then

|In(a)|la=3/?  ifd=2,
58(0) < ChllAellne) + Chlllea x { 126, AR CE)
o If o € H2(Q) N C2(Q) with Ap € H'(Q), then
RY*1In(R)|  ifd =2,
58(0) < CHlAplme) + Clldl e x { and ™™ T975 69)

o V& € HX ()™, WE(€) < Chlltr(&)ll 20 -

Remark 5.4. If the solution @ to (2.4) belongs to H*(Q)NHZ(Q), thenw € C%(Q)
and AT € H?(Q). In that case, Theorems 3.6 and 5.3 provide an O(h'/*|In(h)|) (in
dimension d = 2) or O(h*/*3) (in dimension d = 3) error estimate for the Hessian
scheme based on the HD from Definition 5.2. This slightly improves the result of
[12, Theorem 4.3], in which an O(h'/%) estimate is obtained if w € C*(Q) N HZ(Q).

As for the method based on gradient recovery operators, the properties of the
Hessian discretisation follow from the estimates in Theorem 5.3 and from Remark
34.

Corollary 5.5. Let (Dy)men be a sequence of B—Hessian discretisations in the
sense of Definition 5.2, associated to meshes such that hy,, — 0 and (07, )men s
bounded. Then the sequence (Dp,)men is coercive, consistent and limit-conforming.

Proof of Theorem 5.5.

e COERCIVITY: the discrete Poincaré inequality of [11] states that
IIpvp| < diam(Q)|lvpllp, Yvp € Xppo. (5.9)
Let us first prove that

—/ IIpup Apvpdx = [UD;U’D]D, up, vp € X'D,O. (5.10)
Q

The definitions of IIp and Ap yield

0|0k ovD
—/ IpupApvpdxr = E —|K|ug Agvp = — E U E H%
Q KeM KeM  oeFk 7

For o € Fext, 0k ,0vp = 0. Gathering the sums by edges and using (5.3) and (5.6),
we obtain

lo|(vk —vr) |o|0supdsvp
—/QHDUDADUDdx = Z UK Z T = Z T’
KeM 0EFK, int o€Fint
which establishes (5.10). Choosing vp = up, applying the Cauchy-Schwarz in-
equality and using (5.9), we get
luplp < [Hpupl|[|Apup]|| < diam(Q)|lup|p[|Apup.
Thus,
[upllp < diam(Q)[[Apup]. (5.11)
Combining (5.9) and (5.11), we get
[TIpvp|| < diam(Q)?||Apupl]|. (5.12)
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The stability of the discrete gradient [12, Lemma 4.1] yields

IVpupl|l < 0Vd|lupllp Yup € Xp.
Estimate (5.11) then shows that ||Vpup| < diam(Q)0v/d||Apup||, which, together
with (5.12), concludes the proof of the estimate on CE.

e CONSISTENCY — COMPACT SUPPORT: The proof utilises the ideas of [12], with a
few improvements of the estimates. For s > 0 welet 2, = {z € Q; dist(z, Q) > s}.
In this proof, A < B means that A < CB for some constant C' depending only on
0.

We first consider the case where ¢ € C2(Q2) and Ay € H'(f2), with support at
distance from 9 equal to or greater than a. As in [12, Proof of Lemma 4.4], let
Y € C°(9), equal to 1 on 3,/4, that vanishes on 2\, /4, and such that, for all

a € N4 with |a| = Z 1,

0% Lo ) S a~lol. (5.13)
Letting ¢% = (¥*(xx))Kkem, we have [Apyg| < a2, Hence, for all r € [1,00],
since Q\Qg, has measure < a,

[ADYS || Lr i) S a= 2. (5.14)

Letting ¥ = (Ui )kem be the solution of the two-point flux approximation finite
volume scheme with homogeneous Dirichlet boundary conditions and source term
—Agp, by [11] we have, with ¢p = (¢(@x))Kems

1/2
(Z %«w— soD»Q) Sl (5.15)

oceF
and, for ¢ € [1,400) if d=2,q €[1,6] if d =3,

1/q
( S K] ik — so(mmw) S ahllel e )- (5.16)

KeM

We then set w = (*(xx )UK )kem, that belongs to Xpg if h < a/4. It is proved
in [12, Proof of Lemma 4.4, p. 2032] that, with [A¢]x = ﬁ S Ap de,

|U|

|K| Z 6K (rq/)’D)&K O’(U - (P'D)
ceFk

ZTLK—FTQ,K. (5.17)

Using Hoélder’s inequality with exponents (g, qQTqQ), for some ¢ > 2 admissible in
(5.16), and recalling (5.14), we have

1/2
_94149=2
(Z K| |T1,K|2) S aha™ T gl e (5.18)

KeM

On the other hand, we have |0k ,9%| < dea™! (see [12, Proof of Lemma 4.4]).
Hence, by Cauchy—Schwarz inequality on the sum over the faces, and using the
estimate Zae}‘x lo|lds < K],

a2 ? a2 o
Tk S K (Z o] 16,0 (0 <PD)|> S e 4l Z | |(5Ka( —¢p))>.

oceFk ceFK

Agw — [Ap|x = (Vx — (K )) A VD + —=
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Estimate (5.15) thus leads to

1/2
(Z | K ITz,K|2> S a”hllelloz - (5.19)

KeM

Denote by [Ap]p the piecewise constant function equal to [Aplx on K € M.
Taking the L? norm of (5.17) and using (5.18) and (5.19), we arrive at, since
1

a~ ! <a 27,
31
[Apw — [Ap]p|lL2(0) S gha™ 2" ll¢ll 2 )
Taking ¢ = |In(a)| if d =2 or ¢ = 6 if d = 3 shows that
In(a)la=3/2  ifd=2,
lApu - Bl S Aleleg x { 12T R925 0 G0

A classical estimate [10, Lemma B.6] gives

[[Aglp — Apllrz) S hIACl H1(0), (5.21)

which shows that [[Apw — Ay||r2(q) is bounded above by the right-hand side of
(5.7). The estimates on Vpw — Vg and on IIpw — ¢ follow as in [12, Lemma 4.4].

e CONSISTENCY — GENERAL CASE: Consider now ¢ € HZ(Q)NC?(Q2), and take ¢°
as above. The boundary conditions on ¢ show that |¢(2)| < [|¢]lc2 @) dist(z, 00)?
and |Vo(x)| < [l o2 @ dist (z, 9€2). Hence, using (5.13), [2\Qq| < @ and the fact
that 1 — ¢ = 0 in €, we see that, for all o € N? with |a| < 2,

100 — 0% (W P)ll12() S el oz e)- (5.22)

Since A = Z?zl 92, the above estimate applies to A instead of 9% and, as a
consequence,

I1A¢lD = [AW“P)Ipllz() < 180 = AW e)llLz(e) S aPllellcz-  (5:23)

Consider now the interpolant w € Xp o for 1% € C2(Q) constructed above. Ap-
plying (5.20) to ¢y instead of ¢, noting that [|[*¢|lc2@) S l¢llc2@) (consequence
of (5.22)), and using (5.23), we obtain

In(a)la=3/?2  ifd=2,
80w = Belollzz S @ leloxm + lleloa x { 1T H975
Taking a = h*/2 if d = 2 or a = h%/13 if d = 3 leads to

RY4 In(h)| ifd =2,
[Apw — [A¢lpllr2(0) S l¢llce@) * { 3/13 if d = 3.

Combined with (5.21) this shows that |[Apw — Agl|12(q) is bounded above by the
right-hand side of (5.8). The estimates on Ilpw — ¢ and Vpw — Vo follow in a
similar way.

e LIMIT-CONFORMITY: For ¢ € HB(Q) and vp € Xpo, B= t\r/%) Id implies
/(H : BTBf)HDUD de = / (BH : BS)H'DU'D dx = / A¢HDUD d:z:,
Q Q Q
where ¢ = tr(¢). Also, by definition of HE,

/ B¢ HBvp de = / dApup de.
Q Q
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Thus, (3.4) can be rewritten as

B
WD (5) ’UDGX’D 0\{0} ||H UD” / <A¢HDUD - ¢ADUD> dz (524)
where ¢ = tr(£). Define
> ¢(mK+) - QS(‘I’K*) Vo € Fint
Oop = f’ “ 5.25
’ {qs(za) dex) Vo€ Fu (525)

where z, is the orthogonal projection of xx on the hyperplane which contains o.
For ¢ € H?(Q)?*4, using the divergence theorem,

/A¢HDUde— > / Allpvp de = Y~ UK/vqs ni o ds(z).

KeM KeMoeFk

Gathering over the edges and using the definition of d,, this leads to

/A¢Hpvpda:_ Z& UD/W ny ds(z

oeF
:—§6009/<—+V¢ ng—%> ds(x)
:_C;T(s b ‘b' |+O§T5 UD/( (b—V(b-nU) ds(z).  (5.26)

Since d,vp = 0 for any o € Fext, (5.25), (5.3) and (5.4) imply

= bovp

=Y s (o) - dlaz))

o

oeF 0E€Fint
=Y ézx) Z lo |5KUUD— > IK|¢(xx)Axvp.
KeM oerr 4 KeM

Substituting this in (5.26), we obtain

/AQSHDUD de = Y |K|¢(xk)Axvp

KeM

+3 6, UD/ (M—w ng> ds(a).

oceF

(5.27)

To deal with the first term, we first combine the two estimates in [10, Lemma 7.61]
to see that

|d(xk) — d(y)| < ChIK| ™2 dll g2y, Vy € K.
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Hence, using the Cauchy—Schwarz inequality,

Z |K|¢($K)AKUD—/ oApvp dx
Q

KeM

- Z K] (‘b(wK) - |_I1(|/K¢(y) dy> Agvp

KeM

1/2
< Chl|¢ll 20 (Z |K||AKUD|2> = Ch|¢||ln2(o) | Apvpll.  (5.28)
KeM

Turning to the second term in the right-hand side of (5.27), we notice that the
estimate on the terms Rx , in [11, Proof of Theorem 3.4] show that

b0 Vie
dy Vo -ns| < Ch \/ll_g' 1Ml L2(0p e, Lyixa

Hence, by the Cauchy—Schwarz inequality, we have

~ 1/2
b0 ¢ |o|
gez;agvp/g <K _w.ng) ds(z)| < Ch|Hd| (Uez;d—g(ém)?)

= Chl|¢|l g2 llvpllp < Chdiam(Q)[| ]| a>(o)l| Apepl; (5.29)

where we have used (5.11) in the last line. Plugging (5.28) and (5.29) into (5.27),
we obtain

< Ch||9|| 520 |Apvp]|,

/ A¢HDUD dx —/ ¢ADU'D dx
Q Q

and the estimate on Wp(€) then follows from (5.24), recalling that ¢ = tr(£). O

Remark 5.6. The same analysis also probably applies to the second method pre-
sented in [12, Section 5], which is applicable on general polygonal meshes.

6. NUMERICAL RESULTS

In this section, we present the results of some numerical experiments for the gradient
recovery (GR) method and finite volume (FV) method presented in Sections 4 and
5. All these tests are conducted on the biharmonic problem A%% = f on Q = (0,1)2,
with clamped boundary conditions and for various exact solutions .

6.1. Numerical results for Gradient Recovery method. Three examples are
presented to illustrate the theoretical estimates of Theorem 3.6 on the Hessian
discretisation described in Section 4.2. The considered FE space V}, is therefore the
conforming Py space, and the implementation was done following the ideas in [20].
The following relative errors, and related orders of convergence, in L?(Q), H'(Q)
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and H?(Q) norms are presented:

errp(T) == ”HDU? —l , err(Va) := M
([ V|

_ IVoup— VAl _ [QuVup — vl

errp(Vu) := — = — )
V0 =" vl

. HBup —Ha|| _ IV(QnVup) — Hu

errp(Ha) = — = = ,
([ Hall ([ Hall

where up is the solution to the Hessian scheme (3.1).

We provide in Table 1 the mesh data: mesh sizes h, numbers of unknowns (that
is, the number of internal vertices) nu, and numbers of non-zero terms nnz in the
square matrix of the system.

TABLE 1. (GR) Mesh size, number of unknowns and number of non-
zero terms in the square matrix

h nu nnz
0.176777 9 79
0.088388 49 1203
0.044194 225 7011
0.022097 961 32835
0.011049 | 3969 | 141315
0.005524 | 16129 | 585603

6.1.1. Ezample 1. The exact solution is chosen to be u(z,y) = 22 (x —1)%y?(y—1)2.
To assess the effect of the stabilisation function &;, on the results, we multiply it
by a factor r that takes the values 0.1, 1, 10, and 100.

The errors and orders of convergence for the numerical approximation to w are
shown in Tables 2-5. It can be seen that the rate of convergence is quadratic in
L?-norm and linear in H'-norm (see err(Va)). However, using gradient recovery
operator, a quadratic order of convergence in H' norm is recovered (see errp(Va)).
The rate of convergence in energy norm is linear (see errp(Hu)), as expected by
plugging the estimates of Theorem 4.3 into Theorem 3.6. We also notice a very
small effect of r on the relative errors and rates.

TABLE 2. (GR) Convergence results for the relative errors, Example 1,
r=20.1

nu errp(u) | Order err(Vu) Order || errp(Vu) | Order || errp(Hu) | Order
9 9.274702 - 31.591906 - 0.568338 - 0.595635 -
49 0.220095 | 5.3971 0.682922 | 5.5317 || 0.164105 | 1.7921 0.266927 | 1.1580
225 0.066997 | 1.7160 0.201282 | 1.7625 || 0.049395 | 1.7322 0.128410 | 1.0557
961 0.019135 | 1.8079 0.088805 | 1.1805 || 0.013697 | 1.8505 0.062164 | 1.0466
3969 | 0.005133 | 1.8983 0.040845 | 1.1205 || 0.003623 | 1.9185 0.030457 | 1.0293
16129 | 0.001331 | 1.9474 0.019422 | 1.0724 || 0.000933 | 1.9568 0.015059 | 1.0161

6.1.2. Ezample 2. We consider here the transcendental exact solution @ = x2(x —
1)%24y%(y — 1)?(cos(2mw) + sin(27y)), and » = 0.1,1 and 10. Tables 6-8 presents the
numerical results. The same comments as in Example 1 can be made about the
rates of convergence. Past the coarsest meshes, we also notice as in Example 1 that
r only has a small impact on the relative errors.
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TABLE 7. (GR) Convergence results for the relative errors, Example 2,
r=1

nu errp () Order err(Vu) Order || errp(Vu) | Order || errp(Hu) | Order
9 10.222667 - 19.376883 - 1.058048 - 1.333720 -
49 0.475973 | 4.4247 1.467316 | 3.7231 0.229176 | 2.2069 0.473233 | 1.4948
225 0.074399 | 2.6775 0.313397 | 2.2271 0.050755 | 2.1748 0.170477 | 1.4730
961 0.017711 | 2.0706 0.112806 | 1.4742 || 0.013591 | 1.9009 0.079552 | 1.0996
3969 0.004547 | 1.9615 0.052162 | 1.1128 || 0.003640 | 1.9006 0.039162 | 1.0224
16129 0.001164 | 1.9657 0.025515 | 1.0317 || 0.000949 | 1.9393 0.019456 | 1.0092

TABLE 8. (GR) Convergence results for the relative errors, Example 2,
r =10

nu errp(u) | Order || err(Vaw) | Order || errp(Vaw) | Order || errp(Hu) | Order
9 1.413122 - 2.541143 - 0.845365 - 0.894504 -
49 0.313425 | 2.1727 || 0.878752 | 1.5319 || 0.225247 | 1.9081 0.396725 | 1.1729
225 0.066842 | 2.2293 || 0.262354 | 1.7439 || 0.051757 | 2.1217 || 0.165546 | 1.2609
961 0.016897 | 1.9840 || 0.109794 | 1.2567 || 0.013783 | 1.9089 || 0.079311 | 1.0616
3969 0.004376 | 1.9492 || 0.052012 | 1.0779 || 0.003675 | 1.9072 || 0.039149 | 1.0185
16129 || 0.001123 | 1.9621 || 0.025506 | 1.0280 (| 0.000956 | 1.9425 || 0.019455 | 1.0088

TABLE 9. (GR) Convergence results for the relative errors, Example 3,
r=20.1

nu errp () Order err(Vu) Order || errp(Vu) | Order || errp(Hu) | Order

9 81.804173 - 164.358300 - 1.068682 - 1.155266 -
49 0.677743 | 6.9153 2.358209 6.1230 || 0.232374 | 2.2013 || 0.517095 | 1.1597
225 0.093340 | 2.8602 0.447143 2.3989 || 0.048701 | 2.2544 || 0.207642 | 1.3163
961 0.017130 | 2.4459 0.125296 1.8354 || 0.010361 | 2.2328 || 0.084719 | 1.2933

3969 0.003975 | 2.1074 0.053941 1.2159 || 0.002643 | 1.9711 || 0.041197 | 1.0401
16129 0.000982 | 2.0167 0.026457 1.0278 || 0.000692 | 1.9341 || 0.020529 | 1.0049

TABLE 10. (GR) Convergence results for the relative errors, Example
3, r=1

nu errp(u) | Order err(Va) Order || errp(Vu) | Order || errp(Hu) | Order
9 8.708395 - 16.990965 - 0.950590 - 0.990455 -
49 0.516904 | 4.0744 1.490046 | 3.5113 || 0.224877 | 2.0797 || 0.492555 | 1.0078
225 0.089332 | 2.5326 0.414243 | 1.8468 || 0.048056 | 2.2263 0.203301 | 1.2767
961 0.016920 | 2.4005 0.122315 | 1.7599 || 0.010349 | 2.2153 0.084441 | 1.2676
3969 0.003953 | 2.0975 0.053813 | 1.1846 || 0.002646 | 1.9678 0.041186 | 1.0358
16129 || 0.000978 | 2.0153 0.026452 | 1.0246 || 0.000693 | 1.9337 || 0.020528 | 1.0045

[15]. To ensure the correct orthogonality property (see Definition 5.1), the point
xx € K is chosen as the circumcenter of K if K is a triangle, or the center of mass
of K if K is a rectangle. As a result, for triangular meshes, the L? error, errp(u),
is calculated using a skewed midpoint rule, where we consider the circumcenter of
each cell instead of its center of mass. We denote the relative H? error by

_ . [Apup — A7l
eer(Au) = W
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the function values and first partial derivatives at the three vertices of the original
triangle in addition to the normal derivative at the midpoints of the sides of the
original triangle.

7.2. An example of non-conforming method: the Adini rectangle. Assume
that Q can be covered by mesh M made up of rectangles (we restrict the presen-
tation to d = 2 for simplicity). The element K consists of a rectangle with vertices
{a;, 1 < i < 4}; the space Py is given by Px = P3 @ {z173} @ {2325}, by which we
mean polynomials of degree < 4 whose only fourth-degree terms are those involving
xlxg and x‘;’xQ. Thus P3 C Px. The set of degrees of freedom in each cell is

dp dp
Yk = {p(ai)a 8—331(%), 8—3:2

The global approximation space is then given by

(a;);1<i<4, pE]P’K}.

Vi =: {v, € L*(Q); vp|x € Px VK € M, v, and Vo, are continuous at

the vertices of elements in M, v, and Vv, vanish at vertices on 9Q}.
Note that V3, C HE(Q) N CO(Q).

Definition 7.1 (Hessian discretisation for the Adini rectangle). Each vp € Xpo
is a vector of three values at each vertexr of the mesh (with zero values at boundary
vertices), corresponding to function and gradient values, pvp is the function such
that (Ilpvp)|x € Pk and its gradient takes the values at the vertices dictated by
vp, Vpup = V({Ilpup) and Hg?)p = 'Hf/l(HDUD) is the broken HEB (Hp is the
broken H ).

We assume that the mesh is regular, that is, (4.1) holds with 7 not depending on
the mesh.

Theorem 7.2. Let D be a B—Hessian discretisation in the sense of Definition
7.1 with B satisfying the coercive property. Then, there exists a constant C, not
depending on D, such that

e C5<C,

o Y € H*(Q) N HF(Q), SE(») < Chllellmsa),

o V€ H2(Q)1%0, WE(E) < ChlEl| 2 apne.

The properties of Hessian discretisations built on the Adini rectangle follow from
this theorem and Remark 3.4.

Corollary 7.3. Let (Dy,)men be a sequence of B—Hessian discretisations built on
the Adini rectangle, such that B is coercive and the underlying sequence of meshes
are reqular and have a size that goes to 0 as m — 0o. Then the sequence (Dp,)men
18 coercive, consistent and limit-conforming.

Proof of Theorem 7.2.

In this proof, C > 0 denotes a generic constant that can change from one line to
the other but depends only on 2, d, B and 7.

e COERCIVITY: Since V,, C H{(Q), for v € Xp, the Poincaré inequality yields
[Tpv| < diam(2)||Vpv||, which gives us part of the estimate on C5. Define the
broken Sobolev space

H' (M) ={veL*); VK € M, € H'(K)}
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and endow it with the dG norm
1
lwllze = IV pmwll* + D —IlwlliZz ), (7.1)
h
oeF ?

where
ho — min(hK,hL) if o€ .Fint, M, = {K, L}
T hi if 0 € Fext, Mo =K,

and the jump of w is

[[w]]: WK — WL ifUEEnt;MU:{KaL}
WK if 0 € Foxt, Moy = K.

If [w] = 0 at the vertices of o then, by the Poincaré inequality in H} (o) (Lemma
A1),
I[w]llz2(o) < ChollVmlw]llLz (o) (7.2)

If 0 € Fine with M, = {K, L} then [w] = 0 at the vertices of o, and (7.2) combined
with the trace inequality [7, Lemma 1.46] therefore give

I[w]lir20) < Cho(IVmwik |2 (o)a + IV mwizllL2(0)e)
< Cucho (Wi P IV sqwll ey + by IV ez, (7.3)
where Ci, depends only on d and the mesh regularity parameter 7. Take v € Xp g.

Since Vpw is continuous at the vertices of elements in M and Vpv vanish at vertices
along 9, choosing w = Vpv in (7.2) and (7.3) yields

IIVDulllz2(o)e < Cirho (hl_(l/2||VM(VDU)||L2(K)dXd +h21/2||VM(VDU)HL?(L)dxd)-

Recalling the definition (7.1) of the dG norm, the above inequality and the coercivity
property of B yield

IVpullie < IVm(Vpo)|?

+2Cu 3 o (W IV ad(T00) By + h IVt (F00) [ gy
ceF

<NVam(Tp0)I? +C > IV a(VD0) 7 (scyixa
KeM
< ClHMmTpv)|* < Co™?|[HF(TIpv)||* = Co™?|[Hpo*.
Using the fact that ||w|| < Cllw|lsc whenever w is a broken polynomial on M

(see [7, Theorem 5.3]), we infer that |[Vpv|| < Co~t||HBv||, which concludes the
estimate on C5.

e CONSISTENCY: Consistency follows from the affine property of the family of Adini
rectangles. Using [6, Theorem 3.1.5, Chapter 3], for » € H3(Q) N HZ(), we obtain
inf [|Hpw —H | < Chlplza,  inf [[Vpw—Ve| < Ch%gls0
weXDp o weXD,o0
and inf  ||lpw — ¢|| < Ch3|¢|3.0,
weXp,o ’

which implies S5 (p) < Ch|d|s.o.
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e LIMIT-CONFORMITY: for & € H%(Q)4*? and vp € Xp , cellwise integration-by-
parts (see Lemma A.2) yields

: BT BEII de = AT d
/Q(H Hllpvp dx Z /K('H Hllpvp dx

KeM

= [ A¢: da — A -Vpup d
/Q §:Hpvpdo — Y /aK( ¢nk) - Vpup ds(z)

KeM
+ ng /¢9K(diV(A$) -ng ) pup ds(x).

For K € M and o € Fg, let ni , be the unit vector normal to o outward to K.
For all ¢ € F, we choose an orientation (that is, a cell K such that o € Fk) and
we set ny = ng . We then set [w] = wjx —wyp if 0 € Fine with M, = {K, L},
and [w] = w|g if 0 € Fexy With M, = K. Then

/(H : AS)HDUD dx — / Af : HDUD dx
“ ¢ (7.4)
== / (Aén,) - [Vpupl ds(m) + Y [ (div(AE) - ng)[lpop] ds(m).
cEFYT oeF Y7

Since Ilpvp € HE(Q) NC(Q), [Upvp] = 0. Let Ax denote the Q; interpolation
operator associated with the values at the four vertices of K, and Ay be the patched
interpolator such that (Ap)|x = Ax for all K. Ap(Vpup) takes the values of Vpup
at the vertices, so it is continuous at internal vertices and vanishes at the boundary
vertices. Hence, for any o € F, [An(Vpup)] vanishes on o since it is linear on this
edge and vanishes at its vertices. As a consequence,

/(H : Af)HDUD dx —/ Af : HDUD dx
Q Q

- Z (Aén,) - [Vpup — An(Vpup)] ds(z)

oceFve

> >/

Abng o - (VDUD - AK(VDUD)> ds(z).  (7.5)
KeMoeFk 7

Setting ¢ = Aéng , and w = Vpup, a change of variables yields
[ erw-rcw)ds@=lol [ 7 (@-Ag(@)ds(a)  (76)
ce€FK 56]“}

where K is the reference finite element. Let Fx = {07, 0y, 07,04 } such that |o;| =
loy| = by and |oy| = |og | = ho. Let us consider

ac(6.0) = [ oo Axw) ast@) - [

91 %1

for ¢ € HY(K) and v € 9;Px. The steps in [6, Theorem 6.2.3] show that
01,k (¢,v) < Ch|d|1,k|v]1,x. For the sake of completeness, let us briefly recall the

(b(v — Ag (U)) ds(x), (7.7)

argument. Using changes of variables, 61 x(¢,v) = hlél_f((gg, 0). Since Py C @,
which is preserved by Ay, for all v € Py and $ € H! (IA() we have ¢, 1?(‘;’ ) =0
(first polynomial invariance). Let us now prove that the same relation holds if
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$ € Py and v € 9, P. Since $ € Py, its value on Kisa constant, say, equal to ag.
Since v € 01 Py we have

0 =1bg+ bz + baxg + ng% + byx1xo + b5$% + ngfxg + b7$g
Taking the values at the four vertices, we get
AI?@\ = bo + (b1 + bg)$1 + (bg + b5 + b7)$2 + (b4 + bﬁ)$1$2.

Assuming without loss of generality that 0/1 is the line z1 = 1 and 0/1/ is the line
z1 =0, we infer

(0 — Ag?)jw,—0 = — (b5 + br)za + bsz3 + by,
(0 — Ag?)jpy=1 = — (b5 + br)za + bsz3 + bras.

The relation &, R((Z, v) = 0 (second polynomial invariance) then follows from
1
/ ¢(0 — Ap0) ds(x) = / ag(—(bs + by)xg + bsas + b)) day
0'1 0

_ / 3(© — Ag?) ds(a).

The bilinear form ¢, f((a, ) is continuous over the space H'! (IA( ) x 01Pg by the
trace theorem. Using the bilinear lemma [6, Theorem 4.2.5], we deduce from the
two polynomial invariances the existence of a constant C' such that |5, »(¢,?)| <

C’|<$|1 =], g for all = Hl(f(), v € 01Pp. A direct change of variables shows
that R

|¢|17f( < C|¢|1,K and |6|1,f( < C|U|1,K-
Since 41 g (¢, v) = hlélf((aﬁ), we infer 61 g (¢,v) < Chlo|i k|v]|1,x. Similarly,

92 k (¢,v) < Ch|pl1,k|v]1,kx (considering integrals over o, and o,). Hence, from
(7.5), (7.6) and (7.7),

‘ /(H : AS)HDUD dx —/ Af : HDUD dx < C”f”Hz(Q)dxdh”HgUD”.
Q Q
The proof of the estimate on W5 (£) is complete. O

APPENDIX A. TECHNICAL RESULTS

Lemma A.1 (Poincaré inequality along an edge). Let o be an edge of a polygonal
cell, w € H' (o) and assume that w vanish at a point on the edge o € F. Then
there exists C' > 0 such that

lwllzz(o) < hollOwllr2 (o),
where O denotes the derivative along the edge and h, is the length of the edge.

Proof. Let m denote the point on the edge o which satisfies w(m) = 0. For m < z,
we get

wle) = wlm)+ [ du)dy = [ o) dy

m

A use of Cauchy-Schwarz inequality yields

. 1/2
wl<le—n2( [“1wular) < V([ ook a)

1/2



Squaring this yields |w(z)
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12 < he fa |0w|? dy and integrating over the edge con-

cludes the proof. O

Lemma A.2 (Integration by parts). Let P be a fourth order tensor. For & €
H2(Q)™? and ¢ € HY(Q), we have

/Q(H:P5)¢>=—/Qw-div(Pg)+/mdiv(Pg-n)¢>.

For+ € H*(Q),

/ngz’mpz—/Qw-div(Pg)Jr/m(div(Pgn))-w.

For ¢ € H'(Q)4,

(1]
2]

(3]

(4]

(5]
(6]
[7]

8

(9]

(10]

(11]

(12]
(13]
(14]

(15]

[ pesve—— [awpo -+ | ivpen)-c.
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